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IN THE GRAVITATIONAL FIELDS OF THE EARTH AND OF THE MOON
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Astronomiya, No.l, pp. 9% -100,
Izdatel”stvo MGU, 1968.
SUMMARY

The expressions are presented of first order perturbations of AES! orbit
elements due to Earth's oblateness, and of the second harmonic of Moon's at-
traction, the Moon being consicucred as a material point moving along a circular
orbit. The formulas derived are also valid for perturbations due to the Sun.

*
® ES

The expressions were derived in a preceding work [1] for sccular varia-
tions of remote AES in the gravitational fields of the Earth and of the Moon,
whereupon perturbations from the second harmonic of the terrestrial potential
and from the second and third harmonics of Moon's attraction were taken into
account; it was moreover considered that the Moon is a material point moving
along an elliptical orbit.

Remaining within the framework of the classical scheme proposed by Lagran-
ge, we obtained perturbations in the Lagrange elements; it is then natural
that the formulas obtained for the secular perturbations are valid for small
eccentricities and inclinations. ‘

In the current work we consider the perturbations of the second harmonic
of Earth's potential and from the second harmonic of Moon's attraction, con-
sidering the latter as a material point moving along a circular orbit.

Secular and long-period perturbations of first order in the motion of the

AES are obtained by way of transition to the independent variable of the the
unperturbed true anomaly of the satellite.

The formulas thus derived are valid for orbits with arbitrary inclination.

(*) O DVIZHENII DALEKIKH ISZ V BRAVITATSIONNOM POLE ZEMLI I LUNY



1. STATEMENT OF THE PROBLEM

Let us choose a rectangular system of coordinates Oxyz with origin at
~the Earth's center of masses in such a way that the plane xOy coincide with
the orbit plane of the perturbing body (the Moon), and the axis Ox be directed
into Moon orbit's perigee.

Then, expanding the perturbing function of the problem in series by Legen-
dre polynomials, and limiting ourselves to second harmonics of Earth's poten-
tial and Moon's attraction, we may write

o VoL ooa 3
R——Z—r—i(&%z\i’—l)-r 3 PEJ—,;{I——;[M%-

4+ N3+ cos 20 (cos 20 (N3 — N?) + 2N,N, sin 20) +

-+ sin 2 (si:ﬁ %0 (N2 — N) + 2N,N,cos2w)] } . (1)

where b= fmL, pg=fmg,
€os P == cos u cos (@ —uv) —sinucosi sin (L — vz,
N, =sinicose +cosi slnecos @,

N, =slnesinQ, u =v+ o,

f is the gravitational constant, mg and my, are respectively the masses of the
Earth and of the Moon, r and ry are the geocentrical radii of the satellite

and of the Moon, v and vy, are the true anomalies of the satellite and of the
Moon, J is the obateness parameter, a, is the equatorial radius of the Earth,

w is the perigee longitude, i is the inclination, © is the longitude of satel-
lite orbit plane, e is the angle between the Earth's equatorial plane and Moon's
orbit plane.

We shall denote the first term of expression (1), having the multiplier p.,
by Ry, and the term containing the multiplier ug, by Ry. If in place of cos ¥
we introduce into R, its expression by the Kepler elements of the satellite
and of the Moon, Ry, will take the following form: :

Ry = -—;—nff” (Bcos?i —1) + %‘nfrz{ sin%i [cos 2 (Q — L) +
+cos2(v+w)]+2 sin“'% cos2(v+ oL+ o -—_Q)V +

L 2cost

J : ' ] o
—cos2(v—vr-l-w--Q) 0,
‘ 7T \ Ll-® )j {2)

where

ry

If we assume the unperturbed true anomaly of the satellite for the new
independent variable, the Lagrange equation for the osculating elliptical ele-
ments, valid for the computations of first order, will take the form [2]
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If we take the unperturbed true anomaly of the satellite for the new
independent variable, the Lagrange equation for the osculating ellitpical
elements, valid for the computations of first order, will take the form [2]:
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Here a is the major semiaxis, e is the eccentricity, n is the average motion
and My is the mean satellite anomaly in the epoch.

The time t is linked with the unperturbed true anomaly by the following
relation: :

v

;: (l-—-e”)'/' S‘ dv

t—=< -
n (1--ecos vy’

0

in which T is the time of satellite passage through the perigee.

2. DEPENDENCE BETWEEN THE TRUE ANOMALIES OF THE MOON AND OF THE
SATELLITE

For the computation of AES' and Moon's mean anomalies at a given moment
of time t we resort to the well known formulas

M =M, +nt, Mp=M.+ nyt, - (4)

where n and n, are the mean anomalistic motions of the satellite and of the
Moon, and M, and M&° are the mean anomalies in the initial epoch.

Let us denote the ratio of the mean motions n and n, by m and m = n, /n.
Eliminating t from Egs.(4), we shall obtain M, = M, + mM, where it is poStula-
ted M, =M, °— mM,. ~

4 Making use of the equation of the center and neglecting the eccentricity
of the orbit of the Moon, we shall obtain
eof



73 =M1+m(v'-—26 sinv +T3e251112v+ . ) =M, <+ mv+ mei(v_),

where f(v) is a limited periodical function of v.

Neglecting in the expressions cos 2(v * v, +w — Q ) by small quantities
em, we shall obtain the final expresion for thé perturbing function R,:

R, = —;-nfrz (3cos®i — 1)+ —Z——nfr2 {sin2 i[cos2 (R — My — mv) +

+C()52(v+m)]+251n4-;—c052(v—:—mv+M1+m—-'§2)+'

-l—2cos4%c052(v—~mv——M1+m—{-Q)}. (5)

3. FORMULAS FOR PERTURBATIONS

Having computed the corresponding derivatives from R, and R by elements
and substiting theur expressions into Eq.(3), we shall obtain a system of dif-
ferential equations of motion of the satellite, in which the right-hand parts
are functions of the true anomaly v.

r \n

Taking advantage of the expansion of expressions of the form | 7~
into Fourier series by multiples of the true anomaly v, we shall have

LY MO S
< . ) M? + ¥ 2P (¢) cos ko,
. k=1
where

P14
l 1]
M (e) = o ‘ (1 4 ecos v)—"cos kvdv.
A )

Integration of system (3) in the assumption that the orbit elements are
replaced in the right-hand parts by constant quantities gives perturbations of
first order

a=aqa,+ d,a, e=¢e,+ de,

.............

where @p €, ....Mo are integration constants; 0,a, &e, ...,8,M, are perturba-
tions of the respective elements,

When integrating system (3) we preserved the secular perturbations and
also the periodical perturbations, of which the total period with respect to v
is 2w /m.

Such periodical perturbations will correspond to those terms in R,,
for which k = n and they will be called in the following long-period perturba-
tions. The final expressions for the secular and long-period perturbations



from the Moon for all the six elements have the form

b,ar =0, .
bom (2 (2] L

8,0, = —cosi -8, + 6,C1, :
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8,Q,= —( k! ) < ) {cos:[ —2mMPv 4 2mMP . v cos 20 +
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8B = MP [v sin?i sin" 20 — 1— sint -i—"cos 2(mv 4 o —0 + M) + )

+lcos4%cos2(mv——m-—9+M1)]

s () () o (e

— My’ + Mf," M) [v sin®icos 20 + — 51r4 — sin2 (mo+o — QM)+

+-—l—-COS £ sin 2(mv— o —Q -+ M) 1_
m 2 I/J

—- —’; M sin 2 (mo— Q M) }

Following are the coefficients of Fourier series entering into the expres-
sions for elements' perturbations:



Making use of the recurrent formulas for the coefficients Ml(lk),
obtained by E. P. Aksenov [3], we find uy’, MQ, M{", M®.

MP = — e (l— ey,

O _ (123 2\ _ .o
M, '(l—r—2e).(1 )",
MP = — —;— e(e?+4) (1 —e?)'n,

CMP =S ey

4

As to the expressions for the perturbations of AES orbit elements from
the second harmonic of Earth's potential, we may obtain closed expressions
relative to eccentricity as well as relative to orbit inclination, to which
Kozai pointed for the first time [4].

The expressions presented below for the perturbations of elements differ
from Kozai's formulas only in that the satellite's orbit elements refer to Moon's
orbit plane, while Kozai took the equatorial elements. The expressions obtained
by us are brought out here for the sake of uniformity and possibility of conduct- ‘
ing the analysis of the joint influence of the Moon and Earth's oblateness on i
the motion of a remote AES.
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# e )
N = sin 2i cos? & + cos 2i sin 2¢ cos Q — sin 2i sin?e cost Q
N, = cosisinQsin2e —sin i sin®e sin 2Q,

N, = sin% sin 2Q (1 + cos?i) + % sin 2 sin 2e sin Q,

N, = sin 2e sini cos Q + 2sin?e cos 2Qcosi.

It is possible to obtain by the above-expounded method the expressions
for long-period perturbations, taking into account e, and em, Such formulas
have been obtained; however, the scope of the present paper does not allow
their presentation here.




In conclusion it must be noted that having taken the ecliptic plane for
the basic readout plane, we may write by analogy the expression for the secu-
lar and long-period perturbations from the Sun.

C&x&x THE END ##ix
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